Analysis 1
 22 November 2023

Warm-up: For what value(s) of x does

$$
\frac{1}{2} x^{3}=4 ?
$$

Celebration of Knowledge

(Midterm exam)

Topics:

- limits of sequences
- limits of functions
- discontinuities / recognizing graphs
- derivatives (Power, Sum, CM rules only)
- tangent lines

See List 4.

Idea: $f^{\prime}(5)$ is a number that is the slope of the tangent line to $y=f(x)$ through the point $(5, f(5))$.

Idea: $f^{\prime}(x)$ is a function that gives the derivative for various x-values.

- Also written $f^{\prime} \quad D f \quad \frac{\mathrm{~d}}{\mathrm{~d} x} f \quad \frac{\mathrm{~d} f}{\mathrm{~d} x} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}$

Calculations: We can find formulas using "derivative rules":

- For any constant c and function $f,(c f)^{\prime}=c \cdot f^{\prime}$.
- For any constant p and function $f, \quad\left(x^{p}\right)^{\prime}=p x^{p-1}$.
- For any functions f and g, $(f+g)^{\prime}=f^{\prime}+g^{\prime}$

Increasing and decreasing

Definitions: We say $f(x)$ is strictly increasing on an interval if for any a, b in that interval with $a<b$ we have $f(b)>f(a)$.

We say $f(x)$ is strictly decreasing on an interval if ... $f(b)<f(a)$.

Facts: If $f(x)$ is strictly increasing on an interval, then $f^{\prime}(x)>0$ for all x-values in that interval. If $f(x)$ is strictly decreasing, then $f^{\prime}(x)<0$.

Critical points

A critical point of f is an x-value where $f^{\prime}(x)$ is either zero or doesn't exist.

- zero \rightarrow horizontal tangent line
- does't exist \rightarrow vertical tangent line, or corner, or discontinuity

A function can only change from increasing to decreasing (or dec. to inc.) at a critical point.

Example 1: Find the critical point(s) of $f(x)=x+9 x^{-1}-5$.

$$
\text { Answer: } x=-3, x=0, x=3
$$

Example 2: Find the critical point(s) of $f(x)=\frac{1}{8} x^{4}-4 x+3$.

$$
\text { Warmup: } \frac{1}{2} x^{3}-4=0 \quad \text { Answer: } x=2
$$

Example 2: Find the critical point(s) of $f(x)=\frac{1}{8} x^{4}-4 x+3$.

$$
x=2 \text { only }
$$

- On what interval(s) is $f(x)=\frac{1}{8} x^{4}-4 x+3$ increasing?

$$
x>2 \quad \text { or }(2, \infty)
$$

- On what interval(s) is $f(x)=\frac{1}{8} x^{4}-4 x+3$ decreasing?

$$
x<2 \quad \text { or }(-\infty, 2)
$$

Which of the graphs A-D is the derivative of the graph on the left?

If we have a graph of $y=f(x)$, we can get a good idea of f^{\prime}.

If we have a graph of $y=f(x)$, we can get a good idea of f^{\prime}.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[\sin (x)]=\cos (x) \quad \frac{\mathrm{d}}{\mathrm{~d} x}[\cos (x)]=-\sin (x)
$$

If you just remember that the derivative of $\cos (x)$ is some other trig function, the increasing/decreasing intervals can tell you that it must be $-\sin (x)$.

We still have the Constant Multiple Rule and the Sum Rule, so we can also do

- $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{2}+190+2 \sin (x)\right]=2 x+2 \cos (x)$,
- $\left(4 x^{3}+6 \cos (x)+x\right)^{\prime}=12 x^{2}-6 \sin (x)+1$.

We do not yet have a rule to find $\frac{\mathrm{d}}{\mathrm{d} x}[\sin (2 x)]$ or $(\tan (x))^{\prime}$.

Critical points

A number c is a "critical point" of $f(x)$...

- if $f^{\prime}(c)=0$ (horizontal tangent line) or
- if $f^{\prime}(c)$ doesn't exist (vertical tangent line, or corner, or discontinuity).

Increasing and decreasing
On an interval or at a single point,

- if $f^{\prime}>0$ then f is increasing,
- if $f^{\prime}<0$ then f is decreasing.

Minimum and maximum

- How do these relate to derivatives?

Extrema (min and max)

We say $f(x)$ has...

- an absolute maximum at $x=c$ if $f(c) \geq f(x)$ for all allowed x values.
- an absolute minimum at $x=c$ if $f(c) \leq f(x)$ for all allowed x values.
- a local maximum at $x=c$ if $f(c) \geq f(x)$ for all x in some open interval containing c.
- a local minimum at $x=c$ if $f(c) \leq f(x)$ for all x in some open interval containing c.
- an absolute extreme if it has a absolute max or absolute min.
- a local extreme if it has a local max or local min.

Extrema (min and max)

The plural of maximum is maxima or maximums.
Or you can just write "maxs" or "max".

1 minimum (or 1 min) $\rightarrow 2$ minima or 2 minimums or 2 mins or 2 min .

1 extremum (or 1 extreme) $\rightarrow 2$ extrema or 2 extremes.

Types of extremes

- Local maximum(s)
$A C E$
- Local minimum(s)

B D

- Absolute maximum(s)
$C E$
- Absolute minimum(s) (none)

Types of extremes

On the interval
 $0 \leq x \leq 3$ only.

- Absolute maximum(s)

$$
C(x=1)
$$

- Absolute minimum(s)

$$
x=3, y=-1
$$

Extreme Value Theorem

If $f(x)$ is continuous on $[a, b]$ then it has at least one absolute min and at least one absolute max somewhere in $[a, b]$.

Continuous is necessary:

If $f(x)$ has a local extreme at $x=c$ then c is a critical point of f.
The opposite is not true: a fun. might have critical points that are not extremes (example: x^{3} at $x=0$).

Finding absolute extremes

To find the absolute extremes of a continuous function $f(x)$ on a closed interval $[a, b]$,

1. Find the critical points. Ignore any that don't satisfy $a \leq x \leq b$.
2. Compute the value of the function at the points from Step 1.
3. Compute the value of the function at the endpoints (a and b).
4. The largest f-value from Steps 2 and 3 is where you have abs. max. The smallest f-value from Steps 2 and 3 is where you have abs. min.

Absolute min and max
Find the absolute extrema of $f(x)=x-\sqrt{x}$ on the closed interval $0 \leq x \leq 2$.

$$
f^{\prime}=1-\frac{1}{2 \sqrt{x}}
$$

$C P$ are $x=0$ and $x=1 / 4$

x	f	
0	0	\leftarrow absolute min
$1 / 4$	2	\leftarrow absolute max
2	$2-\sqrt{2} \approx 0.69$	

Find the absolute extremes of $g(x)=\sqrt{3} \sin (x)+3 \cos (x)$ with $0 \leq x \leq \pi$.

Final answer: abs, min at $x=\pi$ and $a b s, \max$ at $x=\frac{\pi}{6}$.

Finding local extremes

Now we know how to find absolute extremes (on an interval).

What about local extremes?

Finding local extremes

To find the local min/max of $f(x)$,

1. Find the critical points of f.
2. Compute signs of f^{\prime} somewhere in between each CP, and at one point with $x<$ all CP , and at one point with $x>$ all CP .

3. The First Derivative Test

- If $f^{\prime}>0$ to the left of $x=c$ and $f^{\prime}<0$ to the right of $x=c$, then f has a local maximum at $x=c$.
- If $f^{\prime}<0$ to the left of $x=c$ and $f^{\prime}>0$ to the right of $x=c$, then f has a local minimum at $x=c$.
- If f^{\prime} has the same sign on both sides of $x=c$, then f has neither a local minimum nor local maximum at $x=c$.

Example 1: Given that the critical points of

$$
g(x)=\frac{1}{5} x^{5}-2 x^{3}+4 x^{2}-3 x
$$

are -3 and 1 , classify each as a local minimum, local maximum, or neither.

$$
y^{\prime}=x^{4}-6 x^{2}+8 x-3
$$

Example 2: Given that the critical points of

$$
f(x)=\frac{x^{5}}{5}+x^{4}-\frac{2 x^{3}}{3}-6 x^{2}+9 x
$$

are -3 and 1 , classify each as a local minimum, local maximum, or neither.

$$
f^{\prime}=x^{4}+4 x^{3}-2 x^{2}-12
$$

